Create network.py
This commit is contained in:
71
LabMD_3/network.py
Normal file
71
LabMD_3/network.py
Normal file
@@ -0,0 +1,71 @@
|
|||||||
|
import json
|
||||||
|
import re
|
||||||
|
import nltk
|
||||||
|
from nltk import TweetTokenizer
|
||||||
|
|
||||||
|
hashtags = []
|
||||||
|
mapped_hashtags = dict()
|
||||||
|
emotional_values = dict()
|
||||||
|
tokenizer = TweetTokenizer()
|
||||||
|
final_emotional_data = {}
|
||||||
|
|
||||||
|
with open('AFINN-111.txt', encoding="utf-8") as file:
|
||||||
|
for line in file:
|
||||||
|
words = nltk.word_tokenize(line)
|
||||||
|
nr = words[len(words) - 1]
|
||||||
|
str = ""
|
||||||
|
for x in range(len(words) - 1):
|
||||||
|
str += words[x];
|
||||||
|
emotional_values[str] = nr
|
||||||
|
|
||||||
|
with open('tweets.json', 'r', encoding='utf-8') as tweet_json:
|
||||||
|
tweet_data = json.load(tweet_json)
|
||||||
|
for i in range(len(tweet_data)):
|
||||||
|
emotion_rating = 0
|
||||||
|
words = tokenizer.tokenize(tweet_data[i]["text"])
|
||||||
|
for x in words:
|
||||||
|
if x[0] == '#' and len(x) > 1:
|
||||||
|
hashtags.append(x)
|
||||||
|
if re.sub("\s\s+", " ", x).lower() in emotional_values:
|
||||||
|
emotion_rating += int(emotional_values[x.lower()])
|
||||||
|
final_emotional_data[tweet_data[i]["id"]] = emotion_rating
|
||||||
|
|
||||||
|
for i in range(len(hashtags)):
|
||||||
|
mapped_hashtags[hashtags[i]] = 0
|
||||||
|
for i in range(len(hashtags)):
|
||||||
|
mapped_hashtags[hashtags[i]] += 1
|
||||||
|
|
||||||
|
sorted_dict = dict(sorted(mapped_hashtags.items(), key=lambda item: item[1], reverse=True))
|
||||||
|
counter = 10
|
||||||
|
x = 1
|
||||||
|
print("========================")
|
||||||
|
print("Top #10 Hashtags")
|
||||||
|
print("========================")
|
||||||
|
for i in sorted_dict:
|
||||||
|
if x <= counter:
|
||||||
|
print(x,'.', i, " ", sorted_dict[i])
|
||||||
|
x += 1
|
||||||
|
x = 1
|
||||||
|
sorted_emotion_reverse = dict(sorted(final_emotional_data.items(), key=lambda item: item[1], reverse=True))
|
||||||
|
sorted_emotion = dict(sorted(final_emotional_data.items(), key=lambda item: item[1]))
|
||||||
|
print("========================")
|
||||||
|
print("Top #10 Positive Tweets")
|
||||||
|
print("=========================")
|
||||||
|
x = 1
|
||||||
|
for i in sorted_emotion_reverse:
|
||||||
|
if x <= counter:
|
||||||
|
print(i, " ", sorted_emotion_reverse[i])
|
||||||
|
x += 1
|
||||||
|
print("========================")
|
||||||
|
print("Top #10 Negative Tweets")
|
||||||
|
print("========================")
|
||||||
|
x = 1
|
||||||
|
for i in sorted_emotion:
|
||||||
|
if x <= counter:
|
||||||
|
print(i, " ", sorted_emotion[i])
|
||||||
|
x += 1
|
||||||
|
print("========================")
|
||||||
|
print("All Emotional Values per ID")
|
||||||
|
print("=========================")
|
||||||
|
for x in final_emotional_data:
|
||||||
|
print(x, final_emotional_data[x])
|
||||||
Reference in New Issue
Block a user