Create network.py

This commit is contained in:
Daniel
2022-12-09 11:34:04 +02:00
committed by GitHub
parent 1b9db2417c
commit a0eed8f682

71
LabMD_3/network.py Normal file
View File

@@ -0,0 +1,71 @@
import json
import re
import nltk
from nltk import TweetTokenizer
hashtags = []
mapped_hashtags = dict()
emotional_values = dict()
tokenizer = TweetTokenizer()
final_emotional_data = {}
with open('AFINN-111.txt', encoding="utf-8") as file:
for line in file:
words = nltk.word_tokenize(line)
nr = words[len(words) - 1]
str = ""
for x in range(len(words) - 1):
str += words[x];
emotional_values[str] = nr
with open('tweets.json', 'r', encoding='utf-8') as tweet_json:
tweet_data = json.load(tweet_json)
for i in range(len(tweet_data)):
emotion_rating = 0
words = tokenizer.tokenize(tweet_data[i]["text"])
for x in words:
if x[0] == '#' and len(x) > 1:
hashtags.append(x)
if re.sub("\s\s+", " ", x).lower() in emotional_values:
emotion_rating += int(emotional_values[x.lower()])
final_emotional_data[tweet_data[i]["id"]] = emotion_rating
for i in range(len(hashtags)):
mapped_hashtags[hashtags[i]] = 0
for i in range(len(hashtags)):
mapped_hashtags[hashtags[i]] += 1
sorted_dict = dict(sorted(mapped_hashtags.items(), key=lambda item: item[1], reverse=True))
counter = 10
x = 1
print("========================")
print("Top #10 Hashtags")
print("========================")
for i in sorted_dict:
if x <= counter:
print(x,'.', i, " ", sorted_dict[i])
x += 1
x = 1
sorted_emotion_reverse = dict(sorted(final_emotional_data.items(), key=lambda item: item[1], reverse=True))
sorted_emotion = dict(sorted(final_emotional_data.items(), key=lambda item: item[1]))
print("========================")
print("Top #10 Positive Tweets")
print("=========================")
x = 1
for i in sorted_emotion_reverse:
if x <= counter:
print(i, " ", sorted_emotion_reverse[i])
x += 1
print("========================")
print("Top #10 Negative Tweets")
print("========================")
x = 1
for i in sorted_emotion:
if x <= counter:
print(i, " ", sorted_emotion[i])
x += 1
print("========================")
print("All Emotional Values per ID")
print("=========================")
for x in final_emotional_data:
print(x, final_emotional_data[x])