Update networkbonus.py
This commit is contained in:
@@ -1 +1,123 @@
|
|||||||
|
|
||||||
|
import json
|
||||||
|
|
||||||
|
import nltk
|
||||||
|
from nltk import TweetTokenizer
|
||||||
|
|
||||||
|
tt = TweetTokenizer()
|
||||||
|
special_chars = "1234567890.=?\",”$%^;&’*(…):!><"
|
||||||
|
special_chars_CSV = "1234567890.=?\",”;$%^&’*(…):@!>#@<"
|
||||||
|
words_tweet_tokenizer = []
|
||||||
|
words_per_tweet = {}
|
||||||
|
special_words = []
|
||||||
|
hashtags = []
|
||||||
|
wordsForCSV = []
|
||||||
|
|
||||||
|
# Handles the tweet json, separates words into needed categories, and extracts hashtags
|
||||||
|
with open("tweets.json", "r", encoding="utf-8") as tweetJson:
|
||||||
|
tweetJsonData = json.load(tweetJson)
|
||||||
|
for tweet in tweetJsonData:
|
||||||
|
tempAppend = []
|
||||||
|
tempWords = tt.tokenize(tweet["text"])
|
||||||
|
words_per_tweet[tweet["id"]] = tempWords
|
||||||
|
for word in tempWords:
|
||||||
|
if not any(c in special_chars for c in word) and len(word) > 1:
|
||||||
|
words_tweet_tokenizer.append(word)
|
||||||
|
if word[0] == '#':
|
||||||
|
hashtags.append(word)
|
||||||
|
else:
|
||||||
|
if len(word) > 1:
|
||||||
|
special_words.append(word)
|
||||||
|
if not any(c in special_chars_CSV for c in word) and len(word) > 1:
|
||||||
|
tempAppend.append(word)
|
||||||
|
wordsForCSV.append(tempAppend)
|
||||||
|
|
||||||
|
# Counts hashtags and outputs the top
|
||||||
|
hashtag_dictionary = {x: 0 for x in hashtags}
|
||||||
|
for hashtag in hashtags:
|
||||||
|
hashtag_dictionary[hashtag] += 1
|
||||||
|
hashtag_dictionary = dict(sorted(hashtag_dictionary.items(), key=lambda item: item[1], reverse=True))
|
||||||
|
print("===================")
|
||||||
|
print("Top 10 #hashtags:")
|
||||||
|
print("===================")
|
||||||
|
count = 0
|
||||||
|
for hashtag in hashtag_dictionary:
|
||||||
|
if count < 10:
|
||||||
|
print(hashtag, " ", hashtag_dictionary[hashtag])
|
||||||
|
count += 1
|
||||||
|
|
||||||
|
# Analyzes each word
|
||||||
|
tweet_rated_emotion = {}
|
||||||
|
word_emotion_dict = {}
|
||||||
|
with open("AFINN-111.txt", "r", encoding="utf-8") as AFINNdict:
|
||||||
|
for line in AFINNdict:
|
||||||
|
words = nltk.word_tokenize(line)
|
||||||
|
nr = words[len(words) - 1]
|
||||||
|
strn = ""
|
||||||
|
for x in range(len(words) - 1):
|
||||||
|
strn += words[x]
|
||||||
|
word_emotion_dict[strn] = nr
|
||||||
|
|
||||||
|
for id in words_per_tweet:
|
||||||
|
total_rating = 0
|
||||||
|
for word in words_per_tweet[id]:
|
||||||
|
if word.lower() in word_emotion_dict:
|
||||||
|
total_rating += int(word_emotion_dict[word.lower()])
|
||||||
|
tweet_rated_emotion[id] = total_rating
|
||||||
|
|
||||||
|
print("==========================")
|
||||||
|
print("Top 10 Positive :D Tweets:")
|
||||||
|
print("==========================")
|
||||||
|
tweet_rated_emotion = dict(sorted(tweet_rated_emotion.items(), key=lambda item: item[1], reverse=True))
|
||||||
|
count = 0
|
||||||
|
for tweet in tweet_rated_emotion:
|
||||||
|
if count < 10:
|
||||||
|
print(tweet, " ", tweet_rated_emotion[tweet])
|
||||||
|
count += 1
|
||||||
|
print("===========================")
|
||||||
|
print("Top 10 Negative >:D Tweets:")
|
||||||
|
print("===========================")
|
||||||
|
tweet_rated_emotion = dict(sorted(tweet_rated_emotion.items(), key=lambda item: item[1], reverse=False))
|
||||||
|
count = 0
|
||||||
|
for tweet in tweet_rated_emotion:
|
||||||
|
if count < 10:
|
||||||
|
print(tweet, " ", tweet_rated_emotion[tweet])
|
||||||
|
count += 1
|
||||||
|
print("=====================================")
|
||||||
|
print("All Tweets Rated by Emotional Damage:")
|
||||||
|
print("=====================================")
|
||||||
|
print(tweet_rated_emotion)
|
||||||
|
|
||||||
|
# Creates the CSV file
|
||||||
|
studentID = 10
|
||||||
|
startingPoint = studentID * int(200/7)
|
||||||
|
endingPoint = startingPoint + 200
|
||||||
|
graph_dict = {}
|
||||||
|
maxm = 0
|
||||||
|
for i in range(startingPoint, endingPoint):
|
||||||
|
for x in wordsForCSV[i]:
|
||||||
|
graph_dict[x] = []
|
||||||
|
filter_words = ["RT"]
|
||||||
|
file = open("data.csv", "w", encoding="utf-8")
|
||||||
|
file.write("NODE,")
|
||||||
|
for i in range(startingPoint, endingPoint):
|
||||||
|
for word in wordsForCSV[i]:
|
||||||
|
for x in wordsForCSV[i]:
|
||||||
|
if x is not word and x not in graph_dict[word] and x not in filter_words:
|
||||||
|
graph_dict[word].append(x)
|
||||||
|
for x in graph_dict:
|
||||||
|
if len(graph_dict[x]) > maxm:
|
||||||
|
maxm = len(graph_dict[x])
|
||||||
|
for x in range(maxm):
|
||||||
|
file.write("EDGE" + str(x))
|
||||||
|
if x != maxm - 1:
|
||||||
|
file.write(",")
|
||||||
|
file.write("\n")
|
||||||
|
for x in graph_dict:
|
||||||
|
file.write(x)
|
||||||
|
file.write(",")
|
||||||
|
for z in range(len(graph_dict[x])):
|
||||||
|
file.write(graph_dict[x][z])
|
||||||
|
if z != len(graph_dict[x]) - 1:
|
||||||
|
file.write(",")
|
||||||
|
file.write("\n")
|
||||||
|
|||||||
Reference in New Issue
Block a user