Update rsa.py

This commit is contained in:
Daniel
2022-12-27 12:24:17 +02:00
committed by GitHub
parent d67981e4f5
commit 274bffd9a1

View File

@@ -1,62 +1,146 @@
class RSA:
def __init__(self):
self.e = self.d = self.p = self.q = self.phi = 0
def gcd(x, y):
if x > y:
small = y
else:
small = x
for i in range(1, small + 1):
if (x % i == 0) and (y % i == 0):
gcd = i
return gcd
def __egcd(self, a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = self.__egcd(b % a, a)
return (g, x - (b // a) * y, y)
def __modinv(self, a, m):
g, x, y = self.__egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
def encrypt(self, m, keyPair=None):
if (keyPair == None):
keyPair[0] = self.e
keyPair[1] = self.n
return pow(m, keyPair[0], keyPair[1])
def decrypt(self, c, keyPair=None):
if (keyPair == None):
keyPair[0] = self.d
keyPair[1] = self.n
return pow(c, keyPair[0], keyPair[1])
def generateKeys(self, p, q, e=3):
self.p = p
self.q = q
self.n = self.p * self.q
self.phi = (self.p - 1) * (self.q - 1)
self.e = e
self.d = self.__modinv(self.e, self.phi)
if (self.phi % self.e == 0):
raise Exception('invalid values for p and q')
def getPublicKey(self):
return self.e, self.n
def getPrivateKey(self):
return self.d, self.n
def is_coprime(a, b):
if gcd(a, b) == 1:
return 1
return 0
letterHashmap = {
'A': 10,
'B': 11,
'C': 12,
'D': 13,
'E': 14,
'F': 15,
'G': 16,
'H': 17,
'I': 18,
'J': 19,
'K': 20,
'L': 21,
'M': 22,
'N': 23,
'O': 24,
'P': 25,
'Q': 26,
'R': 27,
'S': 28,
'T': 29,
'U': 30,
'V': 31,
'W': 32,
'X': 33,
'Y': 34,
'Z': 35,
' ': 36
}
letterHashmapReverse = {
10: 'A',
11: 'B',
12: 'C',
13: 'D',
14: 'E',
15: 'F',
16: 'G',
17: 'H',
18: 'I',
19: 'J',
20: 'K',
21: 'L',
22: 'M',
23: 'N',
24: 'O',
25: 'P',
26: 'Q',
27: 'R',
28: 'S',
29: 'T',
30: 'U',
31: 'V',
32: 'W',
33: 'X',
34: 'Y',
35: 'Z',
36: ' '
}
def get_modular_inverse(a, m):
for x in range(1, m):
if ((a % m) * (x % m)) % m == 1:
return x
return 0
def hashMessage(msg, init):
hashedMessage = letterHashmap[init]
for x in range(1, len(initialMessage)):
hashedMessage = hashedMessage * 100 + letterHashmap[initialMessage[x]]
return hashedMessage
def get_e(p, q):
for x in range(2, phi):
if is_coprime(x, phi):
return x
return "Error"
def unhashMessage(msg):
letters = []
while msg > 10:
if msg % 100 in letterHashmapReverse:
letters.append(letterHashmapReverse[msg % 100])
msg = msg // 100
strn = ''.join(letters)
strn = strn[::-1]
return strn
# Starting data
decrypted = 95384
p = 281
q = 283
n = p * q
phi = (p - 1) * (q - 1)
rsa = RSA()
rsa.generateKeys(
17055899557196527525682810191339089909014331959812898993437334555169285087976951946809555356817674844913188193949144165887100694620944167618997411049745043243260854998720061941490491091205087788373487296637817044103762239946752241631032791287021875863785226376406279424552454153388492970310795447866569138481,
171994050316145327367864378293770397343246561147593187377005295591120640129800725892235968688434055779668692095961697434700708550594137135605048681344218643671046905252163983827396726536078773766353616572531688390937410451433665914394068509329532352022301339189851111636176939179510955519440490431177444857017)
# Calculated data
e = get_e(p, q)
d = get_modular_inverse(e, phi)
encrypted = pow(decrypted, e) % n
decrypted = pow(encrypted, d) % n
initialMessage = "i love math".upper()
message = hashMessage(initialMessage, initialMessage[0])
# Output
print("=================")
print("Public key:")
print((n, e))
print("=================")
print("Private key:")
print((n, d))
print("=================")
print("Initial message:")
print(decrypted)
print("=================")
print("Encrypted message:")
encrypted = rsa.encrypt(message, keyPair=rsa.getPrivateKey())
decrypted = rsa.decrypt(encrypted, keyPair=rsa.getPublicKey())
print(initialMessage)
print(message)
print(encrypted)
print("=================")
print("Decrypted message:")
print(decrypted)
print("=================")
print(unhashMessage(decrypted))