Update network.py

This commit is contained in:
Daniel
2022-12-26 01:01:38 +02:00
committed by GitHub
parent f46f27821a
commit 550888c84b

View File

@@ -1,71 +1,84 @@
import json
import re
import nltk
from nltk import TweetTokenizer
hashtags = []
mapped_hashtags = dict()
emotional_values = dict()
tokenizer = TweetTokenizer()
final_emotional_data = {}
tt = TweetTokenizer()
special_chars = "1234567890.=?\",”$%^&*(…):!><"
with open('AFINN-111.txt', encoding="utf-8") as file:
for line in file:
words_tweet_tokenizer = []
words_per_tweet = {}
special_words = []
hashtags = []
# Handles the tweet json, separates words into needed categories, and extracts hashtags
with open("tweets.json", "r", encoding="utf-8") as tweetJson:
tweetJsonData = json.load(tweetJson)
for tweet in tweetJsonData:
tempWords = tt.tokenize(tweet["text"])
words_per_tweet[tweet["id"]] = tempWords
for word in tempWords:
if not any(c in special_chars for c in word) and len(word) > 1:
words_tweet_tokenizer.append(word)
if word[0] == '#':
hashtags.append(word)
else:
if len(word) > 1:
special_words.append(word)
# Counts hashtags and outputs the top
hashtag_dictionary = {x: 0 for x in hashtags}
for hashtag in hashtags:
hashtag_dictionary[hashtag] += 1
hashtag_dictionary = dict(sorted(hashtag_dictionary.items(), key=lambda item: item[1], reverse=True))
print("===================")
print("Top 10 #hashtags:")
print("===================")
count = 0
for hashtag in hashtag_dictionary:
if count < 10:
print(hashtag, " ", hashtag_dictionary[hashtag])
count += 1
# Analyzes each word
tweet_rated_emotion = {}
word_emotion_dict = {}
with open("AFINN-111.txt", "r", encoding="utf-8") as AFINNdict:
for line in AFINNdict:
words = nltk.word_tokenize(line)
nr = words[len(words) - 1]
str = ""
for x in range(len(words) - 1):
str += words[x];
emotional_values[str] = nr
str += words[x]
word_emotion_dict[str] = nr
with open('tweets.json', 'r', encoding='utf-8') as tweet_json:
tweet_data = json.load(tweet_json)
for i in range(len(tweet_data)):
emotion_rating = 0
words = tokenizer.tokenize(tweet_data[i]["text"])
for x in words:
if x[0] == '#' and len(x) > 1:
hashtags.append(x)
if re.sub("\s\s+", " ", x).lower() in emotional_values:
emotion_rating += int(emotional_values[x.lower()])
final_emotional_data[tweet_data[i]["id"]] = emotion_rating
for i in range(len(hashtags)):
mapped_hashtags[hashtags[i]] = 0
for i in range(len(hashtags)):
mapped_hashtags[hashtags[i]] += 1
sorted_dict = dict(sorted(mapped_hashtags.items(), key=lambda item: item[1], reverse=True))
counter = 10
x = 1
print("========================")
print("Top #10 Hashtags")
print("========================")
for i in sorted_dict:
if x <= counter:
print(x,'.', i, " ", sorted_dict[i])
x += 1
x = 1
sorted_emotion_reverse = dict(sorted(final_emotional_data.items(), key=lambda item: item[1], reverse=True))
sorted_emotion = dict(sorted(final_emotional_data.items(), key=lambda item: item[1]))
print("========================")
print("Top #10 Positive Tweets")
print("=========================")
x = 1
for i in sorted_emotion_reverse:
if x <= counter:
print(i, " ", sorted_emotion_reverse[i])
x += 1
print("========================")
print("Top #10 Negative Tweets")
print("========================")
x = 1
for i in sorted_emotion:
if x <= counter:
print(i, " ", sorted_emotion[i])
x += 1
print("========================")
print("All Emotional Values per ID")
print("=========================")
for x in final_emotional_data:
print(x, final_emotional_data[x])
for id in words_per_tweet:
total_rating = 0
for word in words_per_tweet[id]:
if word.lower() in word_emotion_dict:
total_rating += int(word_emotion_dict[word.lower()])
tweet_rated_emotion[id] = total_rating
print("==========================")
print("Top 10 Positive :D Tweets:")
print("==========================")
tweet_rated_emotion = dict(sorted(tweet_rated_emotion.items(), key=lambda item: item[1], reverse=True))
count = 0
for tweet in tweet_rated_emotion:
if count < 10:
print(tweet, " ", tweet_rated_emotion[tweet])
count += 1
print("===========================")
print("Top 10 Negative >:D Tweets:")
print("===========================")
tweet_rated_emotion = dict(sorted(tweet_rated_emotion.items(), key=lambda item: item[1], reverse=False))
count = 0
for tweet in tweet_rated_emotion:
if count < 10:
print(tweet, " ", tweet_rated_emotion[tweet])
count += 1
print("=====================================")
print("All Tweets Rated by Emotional Damage:")
print("=====================================")
print(tweet_rated_emotion)