Update networking.py

This commit is contained in:
Daniel
2022-12-26 02:57:50 +02:00
committed by GitHub
parent 550888c84b
commit bcfb9755f0

View File

@@ -1 +1,178 @@
import json
import matplotlib.pyplot as plt
import nltk
from nltk import TweetTokenizer
tt = TweetTokenizer()
special_chars = "1234567890#@.=?\",”$%^&*(…[]):!><"
likes_per_id = {}
retweets_per_id = {}
filter_words = ["sure"]
month_and_noun = {'2020-10': 0, '2020-11': 0, '2020-12': 0,'2022-01': 0, '2022-02': 0, '2022-03': 0,'2022-11': 0}
words_tweet_tokenizer = []
words_set = []
nouns_counted = {}
word_count_not_case_sensitive = {}
proper_nouns_counted = {}
words_per_tweet = {}
special_words = []
word_count_dict = {}
hashtags = []
# Handles the tweet json, separates words into needed categories
with open("tweets.json", "r", encoding="utf-8") as tweetJson:
tweetJsonData = json.load(tweetJson)
for tweet in tweetJsonData:
tempWords = tt.tokenize(tweet["text"])
words_per_tweet[tweet["id"]] = tempWords
for word in tempWords:
if not any(c in special_chars for c in word) and len(word) > 1:
words_tweet_tokenizer.append(word)
if word not in word_count_not_case_sensitive:
word_count_not_case_sensitive[word] = 1
else:
word_count_not_case_sensitive[word] += 1
if word not in word_count_dict and word.lower() not in word_count_dict:
word_count_dict[word.lower()] = 1
else:
word_count_dict[word.lower()] += 1
if word[0] == '#':
hashtags.append(word)
if word not in words_set:
words_set.append(word)
else:
if len(word) > 1:
special_words.append(word)
# Outputs counted words
print("============")
print("Top 10 words")
print("============")
word_count_dict = dict(sorted(word_count_dict.items(), key=lambda item: item[1], reverse=True))
x = 1
for i in word_count_dict:
if x <= 10:
print(i, " ", word_count_dict[i])
x += 1
# This piece of shit code counts the number of a word per month
word = input("Write a word")
with open('tweets.json', 'r', encoding='utf-8') as tweet_json:
tweet_data = json.load(tweet_json)
for i in range(len(tweet_data)):
temp_msg = nltk.word_tokenize(tweet_data[i]["text"])
temp_date = nltk.word_tokenize(tweet_data[i]["created_at"])
for x in temp_msg:
if x == word or x.lower() == word:
month_and_noun[temp_date[0][:7]] += 1
x = list(month_and_noun.keys())
y = list(month_and_noun.values())
plt.bar(x, y, color='maroon', width=0.7)
plt.show()
# Counts nouns
for i in word_count_dict:
ans = nltk.pos_tag([i])[0][1]
if ans == 'NN' or ans == 'NNS' or ans == 'NNPS' or ans == 'NNP':
if i not in filter_words and not any(c in ["\'"] for c in i):
nouns_counted[i] = word_count_dict[i]
nouns_counted = dict(sorted(nouns_counted.items(), key=lambda item: item[1], reverse=True))
# Outputs counted nouns
print("============")
print("Top 10 nouns")
print("============")
x = 1
for i in nouns_counted:
if x <= 10:
print(i, " ", nouns_counted[i])
x += 1
# Counts proper nouns
for i in word_count_not_case_sensitive:
ans = nltk.pos_tag([i])[0][1]
if ans == 'NN' or ans == 'NNS' or ans == 'NNPS' or ans == 'NNP':
if i not in filter_words and not any(c in ["\'"] for c in i) and i[0].isupper():
proper_nouns_counted[i] = word_count_not_case_sensitive[i]
proper_nouns_counted = dict(sorted(proper_nouns_counted.items(), key=lambda item: item[1], reverse=True))
# Outputs proper nouns
print("===================")
print("Top 10 proper nouns")
print("===================")
x = 1
for i in proper_nouns_counted:
if x <= 10:
print(i, " ", proper_nouns_counted[i])
x += 1
# Counts likes and retweets for each tweet
with open('tweets.json', 'r', encoding='utf-8') as tweet_json:
tweet_data = json.load(tweet_json)
for tweet in tweet_data:
likes_per_id[tweet["id"]] = tweet["likes"]
retweets_per_id[tweet["id"]] = tweet["retweets"]
# Counts popularity by formula
popularity_nouns = {}
for noun in nouns_counted:
normLikes = 0
normRetweets = 0
for id in words_per_tweet:
if noun in words_per_tweet[id]:
normLikes += likes_per_id[id]
normRetweets += retweets_per_id[id]
popularity_nouns[noun] = word_count_dict[noun] * (1.4 + normRetweets) * (1.2 + normLikes)
popularity_nouns = dict(sorted(popularity_nouns.items(), key=lambda item: item[1], reverse=True))
# Outputs popularity nouns
print("==========================")
print("Top 10 nouns by popularity")
print("==========================")
x = 1
for i in popularity_nouns:
if x <= 10:
print(i, " ", popularity_nouns[i])
x += 1
# Suggestion stuff
word_sliced_count = {}
word = input("Write word for suggestion")
for x in word_count_dict:
if x not in word_sliced_count:
word_sliced_count[x] = 0
for x in word_count_dict:
if word == x[:len(word)] and word != x:
word_sliced_count[x] += word_count_dict[x]
word_sliced_count = dict(sorted(word_sliced_count.items(), key=lambda item: item[1], reverse=True))
print("===============")
print("Top suggestions")
print("===============")
x = 1
for i in word_sliced_count:
if x <= 10:
print(i, " ", word_sliced_count[i])
x += 1
# Suggestion occurrences stuff
word = input("Write word for suggestion")
words_suggestion_counted = {}
for id in words_per_tweet:
for i in range(len(words_per_tweet[id]) - 2):
if words_per_tweet[id][i] == word:
if words_per_tweet[id][i+1] not in words_suggestion_counted and len(words_per_tweet[id][i+1]) > 1:
words_suggestion_counted[words_per_tweet[id][i+1]] = 1
elif len(words_per_tweet[id][i+1]) > 1:
words_suggestion_counted[words_per_tweet[id][i + 1]] += 1
words_suggestion_counted = dict(sorted(words_suggestion_counted.items(), key=lambda item: item[1], reverse=True))
print("==========================")
print("Top suggestion occurrences")
print("==========================")
x = 1
for i in words_suggestion_counted:
if x <= 5:
print(i, " ", words_suggestion_counted[i])
x += 1